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bstract

The modeling of proton exchange membrane fuel cells (PEMFC) may work as a powerful tool in the development and widespread testing of
lternative energy sources in the next decade. In order to obtain a suitable PEMFC model, which can be used in the analysis of fuel cell-based
ower generation systems, it is necessary to define the values of a specific group of modeling parameters. In this paper, the authors propose a
ynamic model of PEMFC, the originality of which lays on the use of non-integer derivatives to model diffusion phenomena. This model has the
dvantage of having least number of parameters while being valid on a wide frequency range and allows simulating an accurate dynamic response
f the PEMFC.

In this model, the fuel cell is represented by an equivalent circuit, whose components are identified with the experimental technique of electro-
hemical impedance spectroscopy (EIS). This identification process is applied to a commercially available air-breathing PEMFC and its relevance

s validated by comparing model simulations and laboratory experiments. Finally, the dynamic response derived from this fractional model is
tudied and validated experimentally.

2006 Elsevier B.V. All rights reserved.
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. Introduction

It is believed that there will be a time in the future when global
nergy demands will be met by some sources of energy other
han fossil fuels. Thus, fuel cells, in particular proton exchange

embrane fuel cells (PEMFC), are expected to play a major role
n the future energy sector. PEMFC are particularly attractive
or use in vehicles as a replacement to the internal combustion
ngines. They also seem to be a promising source to be used
n residences, industries and small- and large-scale distributed

eneration systems. The low operating temperature of a PEMFC
typically <90 ◦C) allows easy start-up and fast response to load
ariations and operating conditions. Nevertheless, several issues
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eed to be resolved before fuel cells can be commercially viable.
ndeed, the need of precise water management, the dehydration
f membrane, the complex electrode kinetics, the mass transport
nd the slow rate of oxygen reduction are the most significant
imiting factors on the fuel cell performances.

In order to better understand the physical phenomena in the
uel cells and describe their steady state and dynamic behaviors,
he modeling of fuel cells has become more and more important
ver the years in order to simulate the behaviour of the fuel cell
ntegrated in a power system. Such model must be sufficiently
omplex to take into account all the electrochemical phenomena
nd, at the same time, should be able to be integrated into a
omplete system simulation. Furthermore, these models must be
odular so as to allow easily the testing of various technological
olutions.
In this article, the authors have focused on the dynamic mod-

ling of a fuel cell. Such modeling to simulate the transient
esponse of a PEMFC is studied only recently. In the past, the
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mailto:Delphine.Riu@leg.ensieg.inpg.fr
dx.doi.org/10.1016/j.jpowsour.2006.03.044
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Nomenclature

Nomenclature
b Tafel slope (V dec−1)
Cdl double layer capacitance (F m−2)
C concentration of species (mol m−3)
D diffusion coefficient (m2 s−1)
E potential (V)
F Faraday’s constant (96,500 C mol−1)
j current density (A m−2)
j0 exchange current density (A m−2)
jl limiting current density (A m−2)
ne total number of exchanged electrons
P anode and cathode gas pressure (Pa)
R ideal gas constant (8.314 J mol−1 K−1)
Rm membrane resistance (� m2)
s Laplace operator = i × ω

T temperature (K)
Ucell cell potential (V)
Z impedance (�)

Greek symbols
δ gas diffusion layer thickness (m)
ε porosity
γ roughness factor (m2 m−2)
η overpotential (V)
ω angular frequency (rad s−1)
τ time constant (s)

Subscripts and superscripts
a anode
c cathode
k either anode or cathode
m membrane
* referring to the gas channel/gas diffusion layer
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eff referring to the effective (apparent) value

athematical models of the PEMFC have usually been restricted
o the steady state conditions. Bernardi [1] first proposed a one-
imensional model in order to study the water management and
o identify the humidification conditions which induce either
he dehydration of the membrane or excessive flooding. The
ensitivity to the water balance of the PEMFC performance
as demonstrated. Some other models were derived from the
riginal one to take into account heat management [2], mass
ransport in the gas diffusion electrode [3] or to introduce a dif-
erent treatment of the electrochemical reaction [4]. Bernardi et
l. [5] and Springer et al. [6] also presented a one-dimensional
odel to investigate the factors that limit cell performance and

o elucidate the mass transport mechanism within the complex
etwork of gas, liquid and solid phases constituting the gas dif-

usion electrode. Contrary to the previous models, this latter
ne considered the molar changes along the gas channel. These
pproaches made it possible to evaluate the losses in the cathode
as backing and the catalyst layer.

t
T
s

Sources 160 (2006) 1170–1182 1171

So far efforts have been made to model the problem in
hree dimensions. A higher dimensionality makes it possible
o describe the hydrodynamics and multi component transport
nside the flow channel for reactant distribution. Multi com-
onent models were thus developed for cathode or for whole
EMFC, for both single-phase [7] and two phase flow [8]. These
odels showed that the gas distributor geometry has a signif-

cant effect on the diffusion of the reactants and products in
etermining the performance of the cell. Moreover, they con-
rmed that the performance of cathode is strongly influenced by

he presence of liquid water and its removal rate, especially at
igh current density.

The dynamic study of a fuel cell appears to be of great interest
o provide detailed understanding of mass and charge transport
hrough the gas diffusion electrodes and is of extreme impor-
ance for the control strategy and system management in power
eneration systems, especially when there are power injections
nto the network. Thus a first equivalent circuit was proposed to
imulate the impedance spectrum of a PEMFC [9]. This study
howed that the impedance of a fuel cell is a powerful tool in
rder to characterize the intra-electrode processes occurring in
as diffusion electrodes.

Some dynamic models of PEMFC [10–13] have been devel-
ped based on the physical and chemical knowledge of the
henomena occurring inside the cell. These models are gen-
rally implemented in Simulink–Matlab environment. Results
ndicated that the transient response of the PEMFC to reach
teady state is less than 10 s. An important effect of water man-
gement was exhibited too [12].

Some other models were developed in a more “System”
pproach [14]. These models are relatively simple which allow
orrectly simulating the behavior of the fuel cell inserted in an
lectrical network. The main disadvantage of these models is
hat they are far away from the physics of the fuel cell, i.e.
heir parameters are physically non-representative. In parallel,
ome other multi-scale models were elaborated [15] to predict
he dynamic and steady state behaviors for the triple contact
base of the electrochemical reaction). These models made it
ossible to describe quantitatively the reactional mechanisms,
he polarization curves and impedance spectra of the fuel cell.

In this work, the authors have linked these two approaches
components and systems) by using the fractional approach in
rder to obtain an adequate model of fuel cell impedance, which
an be used in a system simulation. Non-integer derivation has
lready been used to correctly model the diffusion phenomenon
f magnetic field in electrical machines [16] which is a phys-
cal phenomenon similar to one found in the electrochemical
evices. The resulting models are precise, having less num-
er of parameters and being valid on a wide frequency range.
oreover, parameters of such non-integer order models have
close link with the physical characteristics of the machines.
his method is very useful for the optimal real-time control of
EMFC running on a load.
In this study, the authors have thus used non-integer deriva-
ives to model the diffusion phenomenon of gases on electrodes.
hen, this new modeling technique is compared with the clas-
ical one while taking into account the characteristic response
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f the fuel cell (i.e. polarization curves and impedance spec-
ra). In order to identify the model parameters, a complete set
f experimental results was obtained for a commercially avail-
ble air-breathing PEMFC using the technique of impedance
pectroscopy. Finally, the dynamic response derived from this
ractional model is studied and validated experimentally.

. Modeling of fuel cell

.1. Hypotheses

The air-breathing PEMFC system is considered as isothermal
nd isobaric. Both these approximations appear to be valid since
hese conditions are normally achieved in a small single-cell
xperimental investigation. The total pressure at the anode and
athode compartment and within the gas diffusion electrodes is
onsidered as constant. Moreover, ionic ohmic drop in the active
ayer and the electronic ohmic drop in the current collectors can
e neglected owing to the high electronic and ionic conductiv-
ties, and thus lead to the absence of voltage drop. It is also
upposed that the gas permeation in the membrane is negligible.

.2. Modeling in steady-state regime

The physical model used to obtain the following governing
quations for steady state and transient responses of PEMFC
s based on a previous d.c. and a.c. model [15]. Fig. 1 shows a
chematic illustration of a self-breathing PEMFC that consists in
membrane sandwiched between two gas diffusion electrodes,

his assembly being pressed between two current collectors and
nd plate. A simplified view of an electrode and the induced
ariation of the concentration of reactant gazes along the width

f diffusion layer are also presented.

In Fig. 1, δ represents the diffusion layer thickness, C∗
k =

k/RT is the concentration of oxygen (O2) or hydrogen (H2)
n the gas channels, Ck the concentration of hydrogen or oxy-

w
e
g
c

Fig. 1. Simplified diagram of
Sources 160 (2006) 1170–1182

en at the active layer/diffusion layer interface and Pk the gas
ressure.

Far from the equilibrium, the hydrogen oxidation and oxygen
eduction are classically described by the laws of Tafel [15]:

ja = j0a exp

(
2.3|ηa|

ba

)
CH2

C∗
H2

and

jc = j0c exp

(
2.3|ηc|

bc

)
CO2

C∗
O2

(1)

here j0k is the exchange current density, bk the Tafel slope,
ηk| = |Ek − Ethk

| the absolute value of the overpotential, R the
deal gas constant and T is the temperature. The subscript “k”
epresents either anode (a) or cathode (c).

It has been shown in [15] that the ratio of the concentration
f the gas at the interface is closely linked to the current density
s follows:

Ck

C∗
k

= 1 − jk

jkl

(2)

inally, the equations (1) are expressed using the limiting current
ensities and introducing the roughness factor of the electrodes:

ja = γa j0a exp

(
2.3|ηa|

ba

) (
1 − ja

jla

)
and

jc = γc j0c exp

(
2.3|ηc|

bc

) (
1 − jc

jlc

)
(3)

hile the limiting current density can be defined as:

lk = Deff
k

δ
C∗

kne,kF (4)
here γk is the roughness factor, nek the number of exchanged
lectrons, F the Faraday’s constant, Deff

k = ε1.5Dk the effective
as diffusion coefficient and ε, the porosity of electrodes. The
oefficient γk is introduced to account for the roughness property

an electrode of PEMFC.
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f the porous active layer. It means that the catalyst particles are
istributed in all the volume of the active layer.

From Eq. (2), it is then useful to express each electrode poten-
ial in terms of current density:

k = Ethk
+ bk

2.3
ln

⎡
⎣ jk

γk · j0k

(
1 − jk

jlk

)
⎤
⎦ (5)

here Ethk
is the thermodynamic potential of the electrode. Cal-

ulating the overpotentials of cathode and anode and fixing the
alues of the electrochemical parameters, the polarization curve,
.e., Ucell as a function of current density j, can then be plotted.
hus, by subtracting the ohmic drop (Rm·j) and the absolute val-
es of overpotentials of cathode and anode from the reversible
hermodynamic potential of the fuel cell (1.23 V), the polariza-
ion curve is given by

cell = 1.23 − |ηa| − |ηc| − Rm · j (6)

.3. Modeling in dynamic regime

For the dynamic and small signal mode, the same assumptions
ave been conceived as those supposed in the stationary regime.

.3.1. Analytic electrical model of fuel cell
When there is no mass transport limitation, the redox reaction

s simply represented by an equivalent electrical circuit of paral-
el RC cells. However, when there are considerable variations of
he interfacial concentrations on electrodes, the redox reaction
s represented by an equivalent circuit of parallel ZfC [15]. The
aradic impedance Zf is composed of two impedances in series:
charge transfer resistance Rt and an impedance of diffusion of

he reduced species on cathode side or oxidized species on anode
ide. This impedance of diffusion is called Warburg impedance
nd is represented by ZW [15,17].

The impedance of an electrode then corresponds to the paral-
el combination of the faradic impedance Zf and the double layer
apacitance (Cdl) to account for the dynamics of the changing
oncentration in the gas backing layer and the charge stored
n the interfacial capacitance. The expression of the electrode
mpedance is thus given by:

(ω) = Zf(ω)

1 + iωCdlZf(ω)
(7)
inally, the total impedance of the fuel cell is composed of
wo impedances, one impedance for each electrode (anode and
athode), in series with the internal resistance Rm linked to the
embrane (Fig. 2). The total impedance ZTotal of the fuel cell is

Fig. 2. Complete equivalent circuit of the fuel cell.
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hen given by:

Total(ω) = Za(ω) + Rm + Zc(ω) (8)

round a stationary operating point, we obtain the charge trans-
er resistance Rtk by differentiating the Eq. (3) with respect to
he over potential (η):

tk = 1

∂jk/∂ηk

= 1

γkj0k
2.3
bk

exp
(

2.3|ηk |
bk

) (
1 − j

jlk

) (9)

hile the analytical impedance of mass diffusion (i.e. Warburg
mpedance) is expressed as [15,17]:

Wk(s) = ∂jk/∂Ck

∂jk/∂ηk

δ

neFDeff
k

tanh(
√

sτk)√
sτk

(10)

here s = I,ω is the Laplace operator, and τk = δ2/Deff
k , the time

onstant of diffusion.
Here, Eq. (10) can be simplified introducing the non-linear

erm Ak(j) which depends on the current

Wk(s) = Ak(j)
tanh(

√
sτk)√

sτk

where Ak(j)

= 1
2.3
bk

(
1 − j

jlk

)
C∗

k

δ

neFDeff
k

(11)

he effective double layer capacitance Ceff
dl is defined as Ceff

dl =
· Cdl, where γ represents the roughness factor whose value is

f the order of 100.

.3.2. Distributed parameter modeling approach
The presence of the tangent hyperbolic function in the ana-

ytical expression of the Warburg impedance does not enable us
o draw an equivalent electrical circuit which is directly usable
o model the transient response of the fuel cell in any operating

ode.
The classical approach of modeling Warburg impedance con-

ists in the decomposition of the tangent hyperbolic function in
he form of a series (theoretically infinite) and in the identi-
cation of these serial terms of the RC cells parameters. The
rincipal drawback of this approach is that it required a trun-
ation if the infinite series. The order of truncation is chosen
ccording to a certain tolerable error. Currently, it is the major
roblem related to the modeling of systems with distributed
arameters of infinite order.

The decomposition of the function tanh in the form of a series
series of Foster) is given by [16] (Fig. 3):

anh(x) = 2x

∞∑
n=1

1

x2 +
[

π(2n−1)
2

]2

he Warburg impedance (Eq. (11)) then becomes:
Wk(s) = 2Ak(j)
∞∑

n=1

1

sτk +
[

π(2n−1)
2

]2 (12)



1174 M.U. Iftikhar et al. / Journal of Power

W
o

c

R

I
d

2

a
s

T
c
f

B
e
f

Z

T
g

Z

T

Z

F
b

2

s

•
•
•

τ

t
i
s
r
f
f

i
i
t
B
o
−
t

F
i

Fig. 3. Foster series equivalent of Warburg impedance.

e can then model this Warburg impedance by infinite number
f parallel RC cells connected in series:

The expression of resistance Rn and capacitance Cn for each
ell n is given by

n = 2A(j)[
π(2n−1)

2

]2 and Cn =
τ
[

π(2n−1)
2

]2

2A(j)

t should be noted that these parameters depend on the current
ensity j.

.3.3. Non-integer order modeling
Non-integer derivatives are introduced in Eq. (11) using

nother approximation, i.e., the second-order Taylor’s expan-
ion of the tanh function [16]:

tanh(
√

sτ)√
sτ

= sinh(
√

sτ)

cosh(
√

sτ)

1√
sτ

≈
√

sτ

1 + sτ
2

1√
sτ

≈ 1√
1 + sτ

(13)

his limited expansion however remains valid at high frequen-
ies; indeed, using the approximation of tanh function for high
requencies:

tanh(
√

sτ)√
sτ

= sinh(
√

sτ)

cosh(
√

sτ)

1√
sτ

≈∞
e
√

sτ

e
√

sτ

1√
sτ

≈∞
1√
sτ

≈∞
1√

1 + sτ

(14)

y using the approximation (13) we can simplify the analytical
xpression of the Warburg impedance given by the Eq. (11), as

ollows:

Wk(s) = Ak(j)√
1 + sτk

(15)

c
c
b
R

ig. 4. Comparison of Warburg impedance, analytical expression (····), classical m
mpedance. (b) Variation of phase.
Sources 160 (2006) 1170–1182

he half-order fractional model of the Faradic impedance is then
iven by

fk(s) = Rtk + ZWk(s) = Rtk + Ak(j)√
1 + sτk

(16)

he total impedance of the electrode is then given by

electrode(s) = 1
1

Zfk(s) + sCeff
dl

(17)

inally, the total impedance of the fuel cell is as usually given
y the relation (8).

.4. Comparison of different models

In Fig. 4, the various models of Warburg impedance, pre-
ented in Section 2.3, are compared in frequency domain, i.e.,

Analytical Warburg impedance given by Eq. (11).
Classical model given by Eq. (12) using 20 RC-cells in series.
Half-order fractional model given by Eq. (14).

These curves have been simulated for A(j) = 1.0 � rad1/2 and
= δ2/D = 1 s. Thus, it can be noted that the difference between

he fractional Warburg impedance and the analytical Warburg
mpedance is very small over a wide range of frequencies. This
mall difference that exists between the two models can be
elated to the second-order expansion of the tangent hyperbolic
unction. This limited expansion however remains valid at high
requencies.

It is also worth mentioning that the fractional Warburg
mpedance represents resistive behavior at low frequency, which
s easily observable by a horizontal line (Fig. 4a) and is charac-
erized by a zero phase (Fig. 4b). Moreover, asymptotically, the
ode plot of fractional model is a straight line having a slope
f −10 dB per decade; while its phase is constant and equal to
45◦. The asymptotic behavior of Warburg impedance is then

otally taken into account by the fractional model contrary to the

lassical one, which behaves like a capacitance for high frequen-
ies. The number of parameters describing each model can also
e highlighted: 2 for fractional model and 40 for the classical
-C one!

odel using 20 RC cells (—), fractional model (- - -). (a) Variation of gain of
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Fig. 5. Comparison between different models of impedance (in Ohms) for j = 1.2 A cm−2, analytical expression (—), classical model using 20 RC cells (····), Fractional
m s.
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Similarly, the total impedance of the fuel cell, using the
wo different models of Warburg impedance can be compared
Fig. 5).Therefore, Fig. 5 shows that the classical model with
R-C) cells seems to be more precise than the fractional model,
articularly in the range of frequencies where the diffusion phe-
omenon appears, i.e., 0.1 and 100 Hz (Figs. 4 and 5). However,
he overall shape of the fractional model is in a good agree-

ent with the shape obtained from the analytical impedance.
lthough there exists a mean error of 0.18% compared to the

nalytical expression on a given frequency range, this error is
egligible for the reduced number of parameters of this model.
owever, it is important to note that this error depends on the

urrent density and that its value increases with current density
ut remains lower than 0.5%.

In spite of this inconvenience, the important point to be noted
s that the number of parameters of the fractional model is
educed. Indeed, the classical (R-C) model has 2 × N param-
ters for N cells (R-C) in series, while the fractional model is
haracterized only by 2 parameters. It is a consequence of the
ntrinsic compactness of the fractional systems. This property,
hich leads to system order reduction, allows decreasing the

imulation times of PEMFC system.

. Validation of non-integer order model

.1. Experimentation

Impedance measurements were carried out on a commer-
ially available air-breathing PEM fuel cell provided by PAX-
TECH. It contained a Nafion®-115 membrane. The platinum
oading on the electrodes was 0.3 mg cm−2. The electrode sur-
ace area was 25 cm2 and the diffusion layer thickness of
00 �m. The experimental results were obtained at ambient tem-
erature (30 ◦C) while the cell functioned with air at cathode and

ydrogen at anode. The test bench consisted of a Solartron 1250
requency response analyzer coupled to a Solartron 1286 elec-
rochemical interface. EIS experiments were performed under
alvanostatic mode with modulating AC current amplitude of

d
b
b
h

00mA and range of the frequency lies between 100 mHz and
5 kHz with 10 points per decade.

In order to study the fuel cell, impedance measurements were
ade at open circuit and at various points along the polarization

urve by changing the load resistance in order to vary the output
urrent of the cell [18,19]. All the impedance spectra shown
n Fig. 6 are modified with respect to the corresponding load
esistance.

From the impedance diagrams of fuel cell, it is possible to
etermine a set of parameters. The high frequency intercept at
eal axis corresponds to the value of the internal resistance Ri of
hich a fraction corresponds to the membrane resistance, Rm;
ere, it varies approximately between 0.23 and 0.32 �. More-
ver, the low frequency limit is the polarization resistance RP,
hich is defined as the derivative (i.e. the slope) of the polariza-

ion curve of the cell. In Fig. 6, from diagram a to diagram k,
P varies approximately from 3 to 0.4 �, and then it becomes
lmost constant at 0.4 �.

In Fig. 6b and c, the diagrams of impedance are composed
f only single arc. This shows that at low current densities,
he impedance of fuel cell is dominated by the phenomenon
f charge transfer. At low frequencies (i.e. for the frequencies
ower than 0.5 Hz) the diagrams of impedance do not have a
articular form, and we cannot give their physical significance.
n this study, we will ignore these points corresponding to the
requencies lower than 0.5 Hz. Moreover, it is well known that
or high current densities, the diagrams of impedance are classi-
ally made of two arcs: the first one, the high frequency arc, is an
rc of charge transfer; while the second one is an arc related to
ass transport phenomenon in the diffusion layer (mainly due

o the diffusion of oxygen at cathode). Moreover, it can be stated
rom literature [20] that the arc related to charge transfer (i.e. the
igh frequency arc) decreases, whereas the arc related to mass
iffusion (i.e. the low frequency arc) increases, with the current

ensity. However, in our measurements, these two arcs cannot
e observed separately. This can be explained on the one hand
y the fact that the output current of the cell is not sufficiently
igh and on the other hand by a high value of the double layer
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F rve. (a
( nd V =
I 0.22
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ig. 6. Impedance diagrams of the fuel cell measured along the polarization cu
d) I = 1.116 A and V = 0.411 V. (e) I = 1.28 A and V = 0.357 V. (f) I = 1.38 A a
= 1.752 A and V = 0.237 V. (j) I = 1.80 A and V = 0.233 V. (k) I = 1.84 A and V =

apacitance, which is hiding the two different phenomena into
ne arc.

.2. Identification of model parameters

The non-linear least square fitting algorithm of MATLAB®

as used to identify the relevant parameters of the fractional
odel of PEMFC developed in Section 2.3. The principle

f this algorithm is to minimize the square of a nonlinear
unction while finding the best values of the unknown vari-
bles (i.e. model parameters) starting from their given initial

alues.

It should be noted that the impedance points measured at
ow frequencies, whose physical significance is not clear, and
he points of impedance having a positive imaginary part (due

n
o
c

) Open circuit. (b) I = 0.564 A and V = 0.584 V. (c) I = 0.906 A and V = 0.480 V.
0.315 V. (g) I = 1.512 A and V = 0.271 V. (h) I = 1.687 A and V = 0.244 V. (i)

0 V.

o wiring inductance) are not taken into account for this iden-
ification process. As shown in Section 2.3, the parameters of
he fractional model, which are to be identified, are Rtk, Ak, τ,
m and γ·Cdl. The effective double layer capacitance, γ·Cdl is
etermined by an algorithm of identification and then this value
s used to do “fitting” for the other parameters of the model
ith experimental results. The value of the time constant τ is

alculated from the frequency corresponding to the peak of the
iffusion arc. As far as internal resistance Ri is concerned, it cor-
esponds to the distance between the origin and the intersection
f the impedance spectrum with the real axis.
The remaining parameters (Rtk and Ak) are identified by using
on-linear least square algorithm. Table 1 shows the values
f the model parameters identified for four impedance spectra
orresponding to current densities ranging between 0.068 and
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Table 1
Values of model parameters identified for different current densities

Parameters j = 0.068 A cm−2 j = 0.070 A cm−2 j = 0.072 A cm−2 j = 0.074 A cm−2 Units

Rta 6.67 × 10−9 3.48 × 10−9 2.48 × 10−9 5.53 × 10−10 �

Rtc 1.80 × 10−5 1.28 × 10−5 1.10 × 10−5 7.0 × 10−6 �

Aa 3.56 × 10−10 1.23 × 10−8 2.0 × 10−8 2.62 × 10−8 � rad1/2

Ac 3.0 × 10−5 4.6 × 10−5 6.37 × 10−5 8.4 × 10−5 � rad1/2

Ri 0.236 0.254 0.283 0.313 �

γ

τ

M

0
p

o
o
w
i
t
r
i
a

3

t

m
n
s
s
t
d
T
a

4

F
j

·Cdl 152 115
0.0404 0.0404

ean error 1.41 2.56

.074 A cm−2, and the mean error corresponding to each set of
arameters.

As expected, the four parameters, Rta, Rtc, Aa and Ac, turn
ut to be more sensitive to the current density than the other
nes (τ, Ri and γ·Cdl). The evolution of the model parameters
ith current densities shows that the higher the output current

s, more the fuel cell is limited by the diffusion phenomenon of
he gases (increase in Ak); on the other hand, the charge-transfer
esistance, Rtk, decreases with the current density. Moreover, it
s clearly shown that the limitation by the diffusion phenomenon
t cathode is more significant than that at the anode (i.e. Ac > Aa).
.3. Validation of model parameters

The identification of the impedance spectra obtained by elec-
rochemical impedance spectroscopy (EIS) provided a set of

o
f
q
f

ig. 7. Impedance spectra of the fuel cell versus its fractional model fitted for,
= 0.072 A cm−2, (d) j = 0.074 A cm−2.
115 115 F
0.0404 0.0404 s
5.50 8.22 %

odel parameters whose relevance must be checked. A conve-
ient way to do this consists in comparing experimental and
imulated Nyquist plots of the fuel cell at a given current den-
ity using the parameters identified in Section 3.2. Fig. 7 displays
he Nyquist plots versus its fractional model fitted for the current
ensities of 0.068, 0.070, 0.072 and 0.074 A cm−2 respectively.
hen, it can be observed that the results of modeling are in good
greement with the measurements.

. Dynamic response

In previous sections, we showed that the insertion of a half-

rder Warburg impedance in the equivalent circuit model of the
uel cell made it possible to have a reliable and compact fre-
uential model. The fractional approach is then at first place a
requential approach. Before concluding this paper, it seemed

measured (*), simulated (—) (a) j = 0.068 A cm−2, (b) j = 0.07 A cm−2, (c)
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ig. 8. Steps for calculating the time domain response of a system containing
on-integer derivatives.

owever essential to us to transform this frequential model into
ime domain, which is an obligatory step for the study of the
ynamic behavior of the fuel cell.

The principal steps of the generalized algorithm for cal-
ulating the time response of a fractional system containing

on-integer derivatives are summarized in Fig. 8 [16].

Each step of this algorithm, which involves extensive calcu-
ations, is described in Appendix A. This algorithm has been
pplied to determine the time response of the air-breathing

w
ω

o

Fig. 10. Simulated voltage responses of the fuel cell and the
Fig. 9. Simplified schematic of a PEMFC.

EMFC studied in Section 3. In order to find the transfer func-
ion of the fuel cell, the load current i(t) is taken as input of
he model, and the voltage across its terminals v(t), as its out-
ut. The equivalent circuit of the fuel cell is shown in Fig. 9. The
eversible thermodynamic potential Eth (=1.23 V) of the fuel cell
s represented by a DC voltage source.

The fractional transfer function of an electrode is given by

k(s) = Vk(s)

I(s)
=

1
sCeff

dl

⌊
Rtk(j) + Z

1/2
Wk (s)

⌋
1

sCeff
dl

+ Rtk(j) + Z
1/2
Wk (s)

here

1/2
Wk (s) = Ak(j)√

1 + s
ω0k

= Ak(j) · √
ω0k√

s + ω0k

(18)
here Vk(s) represents the Laplace transform of vk(t), and
0k = 1/τ0k the angular cut-off frequency. After the application
f the algorithm described above, the output voltage v(t) of the

cathode for: (a) rising step input; (b) falling step input.
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Table 2
Values of model parameters obtained for j = 0.06 A cm−2

Parameters Values Units

Rta 1.94 × 10−8 �

Rtc 3.27 × 10−5 �

Aa ∼ 0 � rad1/2

Ac 4.858 × 10−6 � rad1/2

R 0.3 �

γ

τ

f

v

w
i
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o
o
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t
i
j
t
o

5

t
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o
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0

6

a
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w
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t
d

m

·Cdl 152 F
0.0404 s

uel cell is then given by the following equation:

(t) = Eth − £−1{Za(s)I(s)} − £−1{Zc(s)I(s)} − Rmi(t) (19)

here I(s) represents the Laplace transform of the input current
(t).

In order to find the voltage response of the fractional model,
wo types of input signals i(t) were applied; a rising step signal
f amplitude 1.5A (Fig. 10a-1), and another falling step signal,
f the same amplitude (Fig. 10b-1). The final results of the sim-
lation of the voltage response of the fuel cell (Fig. 10, a-1 and
-1) and of cathode (Fig. 10, a-2 and b-2) are shown on Fig. 10.

For the simulation of Fig. 10, the values of the parame-
ers identified by EIS (in Section 3) were linearly extrapolated
n order to obtain the parameters corresponding to 1.5 A (i.e.
= 0.06 A cm−2). These values are given in Table 2. Note that the
ransient response is in good agreement with the time response
f the gas transport [12].

. Experimental validation of time response

In this section, the dynamic response, derived from the frac-
ional model of PEMFC in Section 4, has been experimentally
alidated.

In order to experimentally measure the dynamic response of
commercial air-breathing PEMFC on the test bench, a peri-

dic square wave signal of the current of amplitude 1.5 A and

requency 0.1 Hz was imposed at the fuel cell terminals by an
lectronic load. The corresponding variations in the cell volt-
ge were then recorded; the results are shown in Fig. 11. These
easurements were made at the ambient temperature (30 ◦C).

ig. 11. Measured dynamic response of the air-breathing PEMFC, cell voltage
—), cell current (- - -).

P
a
w

o
r
m
a
i
t
c
m

A

S

b

ig. 12. Comparison of measured and simulated dynamic responses of the
EMFC, simulated (—), measured (- - -).

The results of simulation (Fig. 10) and experimental mea-
urement (Fig. 11) are compared for a period in Fig. 12. It is
bservable that the modeling results are in good agreement with
he measurements. The mean error over this period is equal to
.64%, and the maximum error is about 4.13%.

. Conclusions

A fine and compact frequential model of a PEMFC taking
ccount of the diffusion and charge-transfer phenomena was
resented in this paper. This new modeling technique distin-
uishes completely from the traditional approaches since it uses
on-integer derivation. In particular it makes possible to reach
model of the fuel cell, reliable on a wide range of frequencies
ith a limited number of parameters. Moreover, each parameter
f the model has a physical significance.

The technique of electrochemical impedance spectroscopy
as demonstrated as a powerful tool in order to validate this
odel. Lastly, a general algorithm for calculating the time

esponse of fractional systems was used for the simulation of the
ransient state of the fuel cell. In order to validate the simulated
ynamic behavior of the fuel cell, a commercial air-breathing
EMFC was subjected to rapid variations in the load current
nd the output voltage was recorded. The results of simulation
ere found in good agreement with experimental results.
However, a further study is necessary for the development

f a more specific algorithm for the simulation of the transient
esponse. The major work needed in future consists in defining
ore systematic methods for identification of the parameters

nd their validation particularly in the time domain. Moreover,
t would also be interesting to study in detail the influence of
he working conditions and geometrical parameters of the fuel
ell (i.e. geometry of electrodes, the thickness and the type of
embrane etc.) on the model parameters.

ppendix A. Calculation of time response of the fuel cell
tep 1: Definition of the transfer function

We can describe a system in the form of a transfer function
etween an output O and an input I, as:F (s) = O(s)

I(s) where O
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Fig. A1. Schematic of an electrode.

nd I indicate the Laplace transforms of the functions o and i,
espectively. The objective is of course to determine the output
(t) for a given input i(t).

Generally, the function F(s) can be written in the form of a
uotient of two polynomials A(s) and B(s), each containing the
nteger derivatives of s and one or more implicit systems of frac-
ional nature all of the same angular cut-off frequency ω0 = 1/τ0.

First of all, we can write an operational relation between the
urrent I(s) and the voltage V(s) for a single electrode (Fig. A1):

V (s)

I(s)
=

1
sCdl

[Rt(j) + Z
1/2
W (s)]

1
sCdl

+ Rt(j) + Z
1/2
W (s)

(A.1)

here

1/2
W (s) = A(j)√

1 + s
ω0

= A(j) · √
ω0√

s + ω0

here j represents the current density. In this case, A(s) and B(s)
re defined by

(s) = Rt(j) + Z
1/2
W (s)

(s) = 1 + sCdl · Rt(j) + sCdl · Z
1/2
W (s)

tep 2: Change of the variable of Laplace

The second step consists of carrying out the change of the
ariable of Laplace, i.e., s1 = s + ω0.

In effect, the transfer function (A.1) becomes a rational frac-
ion of polynomials in s1 of only integer and non-integer orders:

V (s1 − ω0)

I(s1 − ω0)
= A(s1 − ω0)

B(s1 − ω0)

= A0 + A1/2s
1/2
1

B0 + B1/2s
1/2
1 + B1s

1
1 + B3/2s

3/2
1

(A.2)

here

0 = A(j) · ω
1/2
o

Cdl
, A1/2 = Rt(j)

Cdl
0 = −A(j) · ω3/2
o , B1/2 = 1

Cdl
− ωo · Rt(j)

1 = A(j) · ω1/2
o , B3/2 = Rt(j) T
Sources 160 (2006) 1170–1182

tep 3: Generalized differential equation

The Eq. (A.2) can also be written in the form:

B0 · V (s1 − ω0) + B1/2s
1/2
1 V (s1 − ω0) + B1s

1
1V (s1 − ω0)

+ B3/2s
3/2
1 V (s1 − ω0) = A0I(s1 − ω0)

+ A1/2s
1/2
1 I(s1 − ω0) (A.3)

e know that [12]:

α
1 · G(s1 − ω0) =£ {D(α)[g(t) · exp(tω0)]; s1}

here G is the Laplace transform of the function g. If we apply
he inverse Laplace transform to the Eq. (A.3), the following
eneralized differential equation is obtained:

B0v(t)exp(tω0) + B1/2D
(1/2)[v(t) exp(tω0)]

+ B1D
(1)[v(t) exp(tω0)] + B3/2D

(3/2)[v(t) exp(tω0)]

= A0i(t) exp(tω0) + A1/2D
(1/2)[i(t) exp(tω0)] (A.4)

n order to simplify the notations, we consider next the variables
(t) and e(t) such that:

(t) = v(t) · exp(tω0), e(t) = i(t) · exp(tω0)

y dividing each term of the Eq. (A.4) by B3/2, we can then
rite

B0

B3/2
s(t) + B1/2

B3/2
s(1/2)(t) + B1

B3/2
s(1)(t) + s(3/2)(t) = E(t)

(A.5)

here

(t) = A0e(t) + A1/2e(1/2)(t)

B3/2

tep 4: Change of variables: non-integer derivative of the
utput

The change of variables carried out in this step is the
ey of this algorithm of calculating time response. Indeed,
t is the operation which will enable us to build the gener-
lized system of state equations, and thus to solve the prob-
em.

The system (A.6) below clarifies better this change of vari-
ble:

s(t) = x1(t), s(1/2)(t) = D(1/2)s(t) = x
(1/2)
1 (t) = x2(t),

s(1)(t) = D(1)s(t) = x
(1/2)(t) = x (t),
2 3

s(3/2)(t) = D(3/2)s(t) = x
(1/2)
3 (t) = x4(t) (A.6)

he unknown to be determined is of course x1.



ower

S
e

t

x

w

a

F
s
v

x

w

S

f
(

T
i
o

x

w

λ

w
I

ω

E

x

T
s
c
A
s

S

i
a
n
f
t
e
d
t

U

w
c

R

M.U. Iftikhar et al. / Journal of P

tep 5: Construction of generalized system of state
quations

By using the change of variables defined by the system (A.6),
he Eq. (A.5) can be written in the form:

(1/2)
3 (t) = x4(t) = −a1x1(t) − a2x2(t) − a3x3(t) + E(t)

(A.7)

ith

1 = B0

B3/2
, a2 = B1/2

B3/2
and a2 = B1/2

B3/2

rom the Eqs. (A.6) and (A.7), one can then write the generalized
ystem of state equations between the input vector e(t), the state
ector x(t) = [x1(t),x2(t),x3(t)]T, and the output vector s(t):

(1/2)(t) = A · x(t) + B · e(t), s(t) = C · x(t) + D · e(t)

here

A =

⎡
⎢⎣

0 1 0

0 0 1

−a1 −a2 −a3

⎤
⎥⎦ , B =

⎡
⎢⎣

0

0

1

⎤
⎥⎦ ,

C = [
1 0 0

]
, D = 0 (A.8)

tep 6: Discretization

In order to solve the problem, we will first of all modify the
orm of the system of state equations; starting from the relations
A.7) and (A.8):

x
(1/2)
1 (t) − x2(t) = 0, x

(1/2)
2 (t) − x3(t) = 0,

x
(1/2)
3 (t) + a1x1(t) + a2x2(t) + a3x3(t) = E(t) (A.9)

hen, we compute each variable with a step size of h. The follow-
ng relation gives an approximation of the non-integer derivative
f a function at a sampling instant tm = m·h, [12]:

(vj)
j (tm) =

m∑
k=0

λvj (k) · xj[(m − k) · h] (A.10)

here

vj (k) =

⎧⎪⎨
⎪⎩

(−1)k
vj(vj − 1) × · · · × (vj − k + 1)

hvjk!
for k ≥ 1

1

hvj
for k = 0

here vj indicates the order of the derivation of the variable xj.
n the next we will consider for k ≥ 1:

vj (k) = (−1)k
vj(vj − 1) × · · · × (vj − k + 1)

k!

q. (A.10) can then be written in the form:
vj
j (tm) = 1

hvj
· xj(tm) + 1

hvj
·

m∑
k=1

ωvj (k) · xj[(m − k) · h]

(A.11)
[
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he first term at right-hand side corresponds to what we are
eeking to calculate at the instant tm (tm = m·h), the sum Qj(m·h)
orresponds to the samples calculated at the previous instants.
pplying the expression (A.11), for each state variable of the

ystem (A.9), we obtain:
⎡
⎢⎣

h−1/2 −1 0

0 h−1/2 −1

a1 a2 a3 + h−1/2

⎤
⎥⎦ ·

⎡
⎢⎣

x1(mh)

x2(mh)

x3(mh)

⎤
⎥⎦

=

⎡
⎢⎣

−Q1(mh)

−Q2(mh)

−Q3(mh) + E(mh)

⎤
⎥⎦ (A.12)

tep 7: Solution of the system

By inversing the matrix M defined in the relation (A.12), it
s then possible to determine the value of each state variable
t any instant and particularly that in which we are interested,
amely x1. By multiplying this variable by the term exp(−t/τo)
or every instant t, we finally obtain the variable v(t). Following
he same steps for the anode and cathode, and then using the
quation of polarization of the fuel cell, subtracting the ohmic
rop in the membrane, cell voltage can be plotted with respect to
ime.

cell(t) = 1.23 − |va(t)| − |vc(t)| − Rm · i(t)

here va(t) and vc(t) are the output voltages of the anode and
athode respectively, determined using the above algorithm.

eferences

[1] D.M. Bernardi, Water-balance calculation for solid polymer electrolyte fuel
cells, J. Electrochem. Soc. 137 (1990) 3344–3350.

[2] T.V. Nguyen, R.E. White, A water and heat management model for
proton-exchange-membrane-fuel-cell, J. Electrochem. Soc. 140 (1993)
2178–2186.

[3] T.E. Springer, T.A. Zawodzinski, S. Gottesfeld, Polymer electrolyte fuel
cell model, J. Electrochem. Soc. 138 (1991) 2334–2342.

[4] G. Murgia, L. Pisani, M. Valentini, B.D. Aguanno, Electrochemistry and
mass transport in polymer electrolyte membrane fuel cells, J. Electrochem.
Soc. 149 (2002) A31–A38.

[5] D.M. Bernardi, M.K. Verbrugge, A mathematical model of the solid-
polymer-electrolyte fuel cell, J. Electrochem. Soc. 139 (1992) 2477–
2491.

[6] T.E. Springer, M.S. Wilson, S. Gottesfeld, Modeling and experimental diag-
nostics in polymer electrolyte fuel cells, J. Electrochem. Soc. 140 (1993)
3513–3526.

[7] J.S. Yi, T.V. Nguyen, Multicomponent transport in porous electrode of
proton exchange membrane fuel cell using interdigitated gas distributor, J.
Electrochem. Soc. 146 (1999) 38–45.

[8] D. Natarajan, T.V. Nguyen, A two-dimensional, two-phase, multi-
component, transient model for the cathode proton exchange membrane
fuel cell using conventional gas distributor, J. Electrochem. Soc. 148 (2001)
A1324–A1335.
[9] N. Wagner, Characterisation of membrane-electrode assemblies in poly-
mer electrolyte fuel cells using A.C. impedance spectroscopy, J. Appl.
Electrochem. 32 (2002) 859–863.

10] M. Ceraolo, C. Miuli, A. Pozio, Modelling static and dynamic
behaviour of proton exchange membrane fuel cells on the basis of



1 ower

[

[

[

[

[

[

[

[

[

182 M.U. Iftikhar et al. / Journal of P

the electro-chemical description, J. Power Sources 113 (2003) 131–
144.

11] S. Yerramalla, A. Davari, A. Feliachi, T. Biswas, Modeling and simulation
of the dynamic behavior of a polymer electrolyte membrane fuel cell, J.
Power Sources 124 (2003) 104–113.

12] Y. Wang, C.Y. Wang, Transient analysis of polymer electrolyte fuel cells,
Electrochim. Acta 50 (2005) 1307–1315.

13] P.R. Pathapati, X. Xue, J. Tang, A new dynamic model for predicting tran-
sient phenomena in a PEM fuel cell system, Renewable Energy 30 (2005)
1–22.
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