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Abstract

The modeling of proton exchange membrane fuel cells (PEMFC) may work as a powerful tool in the development and widespread testing of
alternative energy sources in the next decade. In order to obtain a suitable PEMFC model, which can be used in the analysis of fuel cell-based
power generation systems, it is necessary to define the values of a specific group of modeling parameters. In this paper, the authors propose a
dynamic model of PEMFC, the originality of which lays on the use of non-integer derivatives to model diffusion phenomena. This model has the
advantage of having least number of parameters while being valid on a wide frequency range and allows simulating an accurate dynamic response
of the PEMFC.

In this model, the fuel cell is represented by an equivalent circuit, whose components are identified with the experimental technique of electro-
chemical impedance spectroscopy (EIS). This identification process is applied to a commercially available air-breathing PEMFC and its relevance
is validated by comparing model simulations and laboratory experiments. Finally, the dynamic response derived from this fractional model is

studied and validated experimentally.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Itis believed that there will be a time in the future when global
energy demands will be met by some sources of energy other
than fossil fuels. Thus, fuel cells, in particular proton exchange
membrane fuel cells (PEMFC), are expected to play a major role
in the future energy sector. PEMFC are particularly attractive
for use in vehicles as a replacement to the internal combustion
engines. They also seem to be a promising source to be used
in residences, industries and small- and large-scale distributed
generation systems. The low operating temperature of a PEMFC
(typically <90 °C) allows easy start-up and fast response to load
variations and operating conditions. Nevertheless, several issues
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need to be resolved before fuel cells can be commercially viable.
Indeed, the need of precise water management, the dehydration
of membrane, the complex electrode kinetics, the mass transport
and the slow rate of oxygen reduction are the most significant
limiting factors on the fuel cell performances.

In order to better understand the physical phenomena in the
fuel cells and describe their steady state and dynamic behaviors,
the modeling of fuel cells has become more and more important
over the years in order to simulate the behaviour of the fuel cell
integrated in a power system. Such model must be sufficiently
complex to take into account all the electrochemical phenomena
and, at the same time, should be able to be integrated into a
complete system simulation. Furthermore, these models must be
modular so as to allow easily the testing of various technological
solutions.

In this article, the authors have focused on the dynamic mod-
eling of a fuel cell. Such modeling to simulate the transient
response of a PEMFC is studied only recently. In the past, the
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Nomenclature

Nomenclature

b Tafel slope (V dec™!)

Ca double layer capacitance (Fm~2)

C concentration of species (mol m~3)
D diffusion coefficient (m%s—1)

E potential (V)

F Faraday’s constant (96,500 C mol~1)
Jj current density (A m—2)

Jo exchange current density (A m~2)

i limiting current density (A m~2)

e total number of exchanged electrons
P anode and cathode gas pressure (Pa)
R ideal gas constant (8.314 ] mol 1 K1)
R membrane resistance (2 m2)

s Laplace operator =i X w

T temperature (K)

Ucenl cell potential (V)

Z impedance (£2)

Greek symbols

) gas diffusion layer thickness (m)

e porosity

y roughness factor (m2m~2)

n overpotential (V)

w angular frequency (rads™!)

T time constant (s)

Subscripts and superscripts

anode

cathode

either anode or cathode

membrane

referring to the gas channel/gas diffusion layer
interface

eff referring to the effective (apparent) value

*E»‘ON

mathematical models of the PEMFC have usually been restricted
to the steady state conditions. Bernardi [1] first proposed a one-
dimensional model in order to study the water management and
to identify the humidification conditions which induce either
the dehydration of the membrane or excessive flooding. The
sensitivity to the water balance of the PEMFC performance
was demonstrated. Some other models were derived from the
original one to take into account heat management [2], mass
transport in the gas diffusion electrode [3] or to introduce a dif-
ferent treatment of the electrochemical reaction [4]. Bernardi et
al. [5] and Springer et al. [6] also presented a one-dimensional
model to investigate the factors that limit cell performance and
to elucidate the mass transport mechanism within the complex
network of gas, liquid and solid phases constituting the gas dif-
fusion electrode. Contrary to the previous models, this latter
one considered the molar changes along the gas channel. These
approaches made it possible to evaluate the losses in the cathode
gas backing and the catalyst layer.

So far efforts have been made to model the problem in
three dimensions. A higher dimensionality makes it possible
to describe the hydrodynamics and multi component transport
inside the flow channel for reactant distribution. Multi com-
ponent models were thus developed for cathode or for whole
PEMFC, for both single-phase [7] and two phase flow [8]. These
models showed that the gas distributor geometry has a signif-
icant effect on the diffusion of the reactants and products in
determining the performance of the cell. Moreover, they con-
firmed that the performance of cathode is strongly influenced by
the presence of liquid water and its removal rate, especially at
high current density.

The dynamic study of a fuel cell appears to be of great interest
to provide detailed understanding of mass and charge transport
through the gas diffusion electrodes and is of extreme impor-
tance for the control strategy and system management in power
generation systems, especially when there are power injections
into the network. Thus a first equivalent circuit was proposed to
simulate the impedance spectrum of a PEMFC [9]. This study
showed that the impedance of a fuel cell is a powerful tool in
order to characterize the intra-electrode processes occurring in
gas diffusion electrodes.

Some dynamic models of PEMFC [10-13] have been devel-
oped based on the physical and chemical knowledge of the
phenomena occurring inside the cell. These models are gen-
erally implemented in Simulink—Matlab environment. Results
indicated that the transient response of the PEMFC to reach
steady state is less than 10 s. An important effect of water man-
agement was exhibited too [12].

Some other models were developed in a more “System”
approach [14]. These models are relatively simple which allow
correctly simulating the behavior of the fuel cell inserted in an
electrical network. The main disadvantage of these models is
that they are far away from the physics of the fuel cell, i.e.
their parameters are physically non-representative. In parallel,
some other multi-scale models were elaborated [15] to predict
the dynamic and steady state behaviors for the triple contact
(base of the electrochemical reaction). These models made it
possible to describe quantitatively the reactional mechanisms,
the polarization curves and impedance spectra of the fuel cell.

In this work, the authors have linked these two approaches
(components and systems) by using the fractional approach in
order to obtain an adequate model of fuel cell impedance, which
can be used in a system simulation. Non-integer derivation has
already been used to correctly model the diffusion phenomenon
of magnetic field in electrical machines [16] which is a phys-
ical phenomenon similar to one found in the electrochemical
devices. The resulting models are precise, having less num-
ber of parameters and being valid on a wide frequency range.
Moreover, parameters of such non-integer order models have
a close link with the physical characteristics of the machines.
This method is very useful for the optimal real-time control of
PEMFC running on a load.

In this study, the authors have thus used non-integer deriva-
tives to model the diffusion phenomenon of gases on electrodes.
Then, this new modeling technique is compared with the clas-
sical one while taking into account the characteristic response
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of the fuel cell (i.e. polarization curves and impedance spec-
tra). In order to identify the model parameters, a complete set
of experimental results was obtained for a commercially avail-
able air-breathing PEMFC using the technique of impedance
spectroscopy. Finally, the dynamic response derived from this
fractional model is studied and validated experimentally.

2. Modeling of fuel cell
2.1. Hypotheses

The air-breathing PEMFC system is considered as isothermal
and isobaric. Both these approximations appear to be valid since
these conditions are normally achieved in a small single-cell
experimental investigation. The total pressure at the anode and
cathode compartment and within the gas diffusion electrodes is
considered as constant. Moreover, ionic ohmic drop in the active
layer and the electronic ohmic drop in the current collectors can
be neglected owing to the high electronic and ionic conductiv-
ities, and thus lead to the absence of voltage drop. It is also
supposed that the gas permeation in the membrane is negligible.

2.2. Modeling in steady-state regime

The physical model used to obtain the following governing
equations for steady state and transient responses of PEMFC
is based on a previous d.c. and a.c. model [15]. Fig. 1 shows a
schematic illustration of a self-breathing PEMFC that consists in
a membrane sandwiched between two gas diffusion electrodes,
this assembly being pressed between two current collectors and
end plate. A simplified view of an electrode and the induced
variation of the concentration of reactant gazes along the width
of diffusion layer are also presented.

In Fig. 1, § represents the diffusion layer thickness, C} =
Py/RT is the concentration of oxygen (O7) or hydrogen (H3)
in the gas channels, Cy the concentration of hydrogen or oxy-
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gen at the active layer/diffusion layer interface and Py the gas
pressure.

Far from the equilibrium, the hydrogen oxidation and oxygen
reduction are classically described by the laws of Tafel [15]:

= o oxp 2.3nal\ Ch, ond
Ja = JOa b, C;—(IZ
) ) 2.3In¢1\ Co,
= 1
Je = Joc €Xp ( be Co, (1

where joi is the exchange current density, by the Tafel slope,
[nk| = |Ex — Em, | the absolute value of the overpotential, R the
ideal gas constant and T is the temperature. The subscript “k”
represents either anode (a) or cathode (c).

It has been shown in [15] that the ratio of the concentration
of the gas at the interface is closely linked to the current density
as follows:

@)

Finally, the equations (1) are expressed using the limiting current
densities and introducing the roughness factor of the electrodes:

. . 2.3|ma] Ja
Ja = Va Joa €Xp 71? 11— = and
a Jla

. : 2.3[ncl J
Je = Yc Joc €Xp < : 1- *C 3
be Jle
While the limiting current density can be defined as:
eff
Jik = g CinexF “4)

where yy is the roughness factor, nex the number of exchanged
electrons, F' the Faraday’s constant, D,‘zﬁ = ¢! Dy, the effective
gas diffusion coefficient and ¢, the porosity of electrodes. The
coefficient yy is introduced to account for the roughness property

H;
- -¢—
o, .
i Gas Diffusion Active  Membrane

oiniiiiiEsodEIii — Layer (GDL) Layer
— > €——————————>€<—> e

Self-breathing Membrane Anode

cathode Electrode compartment
Assembly

Fig. 1. Simplified diagram of an electrode of PEMFC.
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of the porous active layer. It means that the catalyst particles are
distributed in all the volume of the active layer.

From Eq. (2), itis then useful to express each electrode poten-
tial in terms of current density:

b .
Eszthk—i—ﬁln J—k
: Vk'jOk( —J*")

Jik

®)

where Ey, is the thermodynamic potential of the electrode. Cal-
culating the overpotentials of cathode and anode and fixing the
values of the electrochemical parameters, the polarization curve,
i.e., Ucenl as a function of current density j, can then be plotted.
Thus, by subtracting the ohmic drop (Rp,+j) and the absolute val-
ues of overpotentials of cathode and anode from the reversible
thermodynamic potential of the fuel cell (1.23 V), the polariza-
tion curve is given by

Ucen = 1.23 — [nal — Inc| — Rm - j (6)
2.3. Modeling in dynamic regime

For the dynamic and small signal mode, the same assumptions
have been conceived as those supposed in the stationary regime.

2.3.1. Analytic electrical model of fuel cell

When there is no mass transport limitation, the redox reaction
is simply represented by an equivalent electrical circuit of paral-
lel RC cells. However, when there are considerable variations of
the interfacial concentrations on electrodes, the redox reaction
is represented by an equivalent circuit of parallel Z¢C [15]. The
faradic impedance Z; is composed of two impedances in series:
a charge transfer resistance R; and an impedance of diffusion of
the reduced species on cathode side or oxidized species on anode
side. This impedance of diffusion is called Warburg impedance
and is represented by Zw [15,17].

The impedance of an electrode then corresponds to the paral-
lel combination of the faradic impedance Z¢ and the double layer
capacitance (Cqj) to account for the dynamics of the changing
concentration in the gas backing layer and the charge stored
in the interfacial capacitance. The expression of the electrode
impedance is thus given by:

Zi(w)

Z(w)= —————
14+ iwCqZe(w)

(N
Finally, the total impedance of the fuel cell is composed of
two impedances, one impedance for each electrode (anode and
cathode), in series with the internal resistance Ry, linked to the
membrane (Fig. 2). The total impedance Zty, of the fuel cell is

Caia || Cae "
1l Ru
P, 1 7
Ria : Membrane Ric \ Y!
Anode Cathode

Fig. 2. Complete equivalent circuit of the fuel cell.

then given by:
Ztotal(@) = Zy(w) + Ry + Ze(w) (®

Around a stationary operating point, we obtain the charge trans-
fer resistance Ry by differentiating the Eq. (3) with respect to
the over potential (n):

1 1

Ry

€))
)

while the analytical impedance of mass diffusion (i.e. Warburg
impedance) is expressed as [15,17]:

djx/9Cy 1) tanh(/sty)
Zwi(s) = 2 - (10)
djix/ Ok ne FD{ STk

where s = Lw is the Laplace operator, and 73 = 82 / szf, the time
constant of diffusion.

Here, Eq. (10) can be simplified introducing the non-linear
term A(j) which depends on the current

. tanh(/s7¢) )
Zwi(s) = Ax()) W where A(j)
_ 1 1) (1
T 23 j off
2 (1 — ﬁ) Cy ne FDy

The effective double layer capacitance Cgff is defined as Cgff =
y - Cq1, where y represents the roughness factor whose value is
of the order of 100.

2.3.2. Distributed parameter modeling approach

The presence of the tangent hyperbolic function in the ana-
Iytical expression of the Warburg impedance does not enable us
to draw an equivalent electrical circuit which is directly usable
to model the transient response of the fuel cell in any operating
mode.

The classical approach of modeling Warburg impedance con-
sists in the decomposition of the tangent hyperbolic function in
the form of a series (theoretically infinite) and in the identi-
fication of these serial terms of the RC cells parameters. The
principal drawback of this approach is that it required a trun-
cation if the infinite series. The order of truncation is chosen
according to a certain tolerable error. Currently, it is the major
problem related to the modeling of systems with distributed
parameters of infinite order.

The decomposition of the function tanh in the form of a series
(series of Foster) is given by [16] (Fig. 3):

= 1
tanh(x) = 2x2—2
=i+ [n(Zg—l)}

The Warburg impedance (Eq. (11)) then becomes:

> 1
Zwi(s) = 24c())

(12)
2
n=18Ty + {7(23 ])]
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Fig. 3. Foster series equivalent of Warburg impedance.

We can then model this Warburg impedance by infinite number
of parallel RC cells connected in series:

The expression of resistance R, and capacitance C, for each
cell n is given by

2
‘ 7(2n—1)
240 _ t{ 2 }
=—"5 and Cp=—F——""—
{7{(2n7])] 2A())
2

It should be noted that these parameters depend on the current
density j.

2.3.3. Non-integer order modeling

Non-integer derivatives are introduced in Eq. (11) using
another approximation, i.e., the second-order Taylor’s expan-
sion of the tanh function [16]:

tanh(y/st)  sinh(y/s7) 1

T 1
V5T cosh(vsm) st 1+ % ST

~ —

V145t
(13)

This limited expansion however remains valid at high frequen-
cies; indeed, using the approximation of tanh function for high
frequencies:

tanh(v/s7) _ sinh(/57) 1 eV o1
VST cosh(\/5T) /5T o0 et \/sT oo /5T oo /T 1 T
(14)

By using the approximation (13) we can simplify the analytical
expression of the Warburg impedance given by the Eq. (11), as
follows:

Ar(j)

1+ sty (15

Zwi(s) =

20 xlog |zw| (dB)
58 & 3

& 8

(a) f(Hz)

The half-order fractional model of the Faradic impedance is then
given by

Z0(0) = Ru+ Zw) = R+ el (16)

The total impedance of the electrode is then given by

Zeeotroqe(s) = ———— (a7)
Zn® T sCyqi

Finally, the total impedance of the fuel cell is as usually given
by the relation (8).

2.4. Comparison of different models

In Fig. 4, the various models of Warburg impedance, pre-
sented in Section 2.3, are compared in frequency domain, i.e.,

e Analytical Warburg impedance given by Eq. (11).
e Classical model given by Eq. (12) using 20 RC-cells in series.
e Half-order fractional model given by Eq. (14).

These curves have been simulated for A(j) = 1.0 Q rad'/? and
7=6%/D=15s. Thus, it can be noted that the difference between
the fractional Warburg impedance and the analytical Warburg
impedance is very small over a wide range of frequencies. This
small difference that exists between the two models can be
related to the second-order expansion of the tangent hyperbolic
function. This limited expansion however remains valid at high
frequencies.

It is also worth mentioning that the fractional Warburg
impedance represents resistive behavior at low frequency, which
is easily observable by a horizontal line (Fig. 4a) and is charac-
terized by a zero phase (Fig. 4b). Moreover, asymptotically, the
Bode plot of fractional model is a straight line having a slope
of —10dB per decade; while its phase is constant and equal to
—45°. The asymptotic behavior of Warburg impedance is then
totally taken into account by the fractional model contrary to the
classical one, which behaves like a capacitance for high frequen-
cies. The number of parameters describing each model can also
be highlighted: 2 for fractional model and 40 for the classical
R-C one!

10°

Fig. 4. Comparison of Warburg impedance, analytical expression (----), classical model using 20 RC cells (—), fractional model (---). (a) Variation of gain of

impedance. (b) Variation of phase.
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Fig. 5. Comparison between different models of impedance (in Ohms) for j= 1.2 A cm™2, analytical expression (—), classical model using 20 RC cells (----), Fractional

model (- --). (a) Total impedance of the PEMFC. (b) Zoom on the diffusion arcs.

Similarly, the total impedance of the fuel cell, using the
two different models of Warburg impedance can be compared
(Fig. 5).Therefore, Fig. 5 shows that the classical model with
(R-C) cells seems to be more precise than the fractional model,
particularly in the range of frequencies where the diffusion phe-
nomenon appears, i.e., 0.1 and 100 Hz (Figs. 4 and 5). However,
the overall shape of the fractional model is in a good agree-
ment with the shape obtained from the analytical impedance.
Although there exists a mean error of 0.18% compared to the
analytical expression on a given frequency range, this error is
negligible for the reduced number of parameters of this model.
However, it is important to note that this error depends on the
current density and that its value increases with current density
but remains lower than 0.5%.

In spite of this inconvenience, the important point to be noted
is that the number of parameters of the fractional model is
reduced. Indeed, the classical (R-C) model has 2 x N param-
eters for N cells (R-C) in series, while the fractional model is
characterized only by 2 parameters. It is a consequence of the
intrinsic compactness of the fractional systems. This property,
which leads to system order reduction, allows decreasing the
simulation times of PEMFC system.

3. Validation of non-integer order model
3.1. Experimentation

Impedance measurements were carried out on a commer-
cially available air-breathing PEM fuel cell provided by PAX-
ITECH. It contained a Nafion®-115 membrane. The platinum
loading on the electrodes was 0.3 mgcm™2. The electrode sur-
face area was 25cm’ and the diffusion layer thickness of
200 pwm. The experimental results were obtained at ambient tem-
perature (30 °C) while the cell functioned with air at cathode and
hydrogen at anode. The test bench consisted of a Solartron 1250
frequency response analyzer coupled to a Solartron 1286 elec-
trochemical interface. EIS experiments were performed under
galvanostatic mode with modulating AC current amplitude of

100mA and range of the frequency lies between 100 mHz and
65 kHz with 10 points per decade.

In order to study the fuel cell, impedance measurements were
made at open circuit and at various points along the polarization
curve by changing the load resistance in order to vary the output
current of the cell [18,19]. All the impedance spectra shown
in Fig. 6 are modified with respect to the corresponding load
resistance.

From the impedance diagrams of fuel cell, it is possible to
determine a set of parameters. The high frequency intercept at
real axis corresponds to the value of the internal resistance R; of
which a fraction corresponds to the membrane resistance, Rp;
here, it varies approximately between 0.23 and 0.32 Q2. More-
over, the low frequency limit is the polarization resistance Rp,
which is defined as the derivative (i.e. the slope) of the polariza-
tion curve of the cell. In Fig. 6, from diagram a to diagram £,
Rp varies approximately from 3 to 0.4 €2, and then it becomes
almost constant at 0.4 .

In Fig. 6b and c, the diagrams of impedance are composed
of only single arc. This shows that at low current densities,
the impedance of fuel cell is dominated by the phenomenon
of charge transfer. At low frequencies (i.e. for the frequencies
lower than 0.5 Hz) the diagrams of impedance do not have a
particular form, and we cannot give their physical significance.
In this study, we will ignore these points corresponding to the
frequencies lower than 0.5 Hz. Moreover, it is well known that
for high current densities, the diagrams of impedance are classi-
cally made of two arcs: the first one, the high frequency arc, is an
arc of charge transfer; while the second one is an arc related to
mass transport phenomenon in the diffusion layer (mainly due
to the diffusion of oxygen at cathode). Moreover, it can be stated
from literature [20] that the arc related to charge transfer (i.e. the
high frequency arc) decreases, whereas the arc related to mass
diffusion (i.e. the low frequency arc) increases, with the current
density. However, in our measurements, these two arcs cannot
be observed separately. This can be explained on the one hand
by the fact that the output current of the cell is not sufficiently
high and on the other hand by a high value of the double layer
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Fig. 6. Impedance diagrams of the fuel cell measured along the polarization curve. (a) Open circuit. (b) /=0.564 A and V=0.584 V. (c) /=0.906 A and V=0.480 V.
(d) I=1.116 A and V=0.411V. (¢) =128 A and V=0.357V. (f) I=1.38 A and V=0.315V. (g) I=1.512A and V=0.271V. (h) I=1.687 A and V=0.244 V. (i)
I=1.752A and V=0.237V. (j) I=1.80A and V=0.233 V. (k) /=1.84 A and V=0.220 V.

capacitance, which is hiding the two different phenomena into
one arc.

3.2. Identification of model parameters

The non-linear least square fitting algorithm of MATLAB®
was used to identify the relevant parameters of the fractional
model of PEMFC developed in Section 2.3. The principle
of this algorithm is to minimize the square of a nonlinear
function while finding the best values of the unknown vari-
ables (i.e. model parameters) starting from their given initial
values.

It should be noted that the impedance points measured at
low frequencies, whose physical significance is not clear, and
the points of impedance having a positive imaginary part (due

to wiring inductance) are not taken into account for this iden-
tification process. As shown in Section 2.3, the parameters of
the fractional model, which are to be identified, are Ry, Ag, T,
R and y-Cq). The effective double layer capacitance, y-Cyq is
determined by an algorithm of identification and then this value
is used to do “fitting” for the other parameters of the model
with experimental results. The value of the time constant 7 is
calculated from the frequency corresponding to the peak of the
diffusion arc. As far as internal resistance R; is concerned, it cor-
responds to the distance between the origin and the intersection
of the impedance spectrum with the real axis.

The remaining parameters (Ry and Ay) are identified by using
non-linear least square algorithm. Table 1 shows the values
of the model parameters identified for four impedance spectra
corresponding to current densities ranging between 0.068 and
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Table 1

Values of model parameters identified for different current densities

Parameters j=0.068 Acm™2 j=0.070 Acm™2 j=0.072Acm ™2 j=0.074 Acm 2 Units
Ra 6.67x 107 3.48 x 1079 248 x 1077 5.53 x 10710 Q

R 1.80 x 1073 1.28 x 1073 1.10 x 1073 7.0 x 1076 Q

Aq 3.56 x 10710 1.23x 1078 20x 1078 2.62x1078 Qrad!”?
Ac 3.0x 1073 4.6x 1073 6.37 x 1073 8.4 x 107 Qrad'?
R; 0.236 0.254 0.283 0.313 Q

y-Cal 152 115 115 115 F

T 0.0404 0.0404 0.0404 0.0404 s

Mean error 1.41 2.56 5.50 8.22 %

0.074 A cm™2, and the mean error corresponding to each set of
parameters.

As expected, the four parameters, R, Ry, Aa and A, turn
out to be more sensitive to the current density than the other
ones (7, R; and y-Cq;). The evolution of the model parameters
with current densities shows that the higher the output current
is, more the fuel cell is limited by the diffusion phenomenon of
the gases (increase in Ax); on the other hand, the charge-transfer
resistance, Ry, decreases with the current density. Moreover, it
is clearly shown that the limitation by the diffusion phenomenon
at cathode is more significant than that at the anode (i.e. Ac > A,).

3.3. Validation of model parameters

The identification of the impedance spectra obtained by elec-
trochemical impedance spectroscopy (EIS) provided a set of
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model parameters whose relevance must be checked. A conve-
nient way to do this consists in comparing experimental and
simulated Nyquist plots of the fuel cell at a given current den-
sity using the parameters identified in Section 3.2. Fig. 7 displays
the Nyquist plots versus its fractional model fitted for the current
densities of 0.068, 0.070, 0.072 and 0.074 A cm ™2 respectively.
Then, it can be observed that the results of modeling are in good
agreement with the measurements.

4. Dynamic response

In previous sections, we showed that the insertion of a half-
order Warburg impedance in the equivalent circuit model of the
fuel cell made it possible to have a reliable and compact fre-
quential model. The fractional approach is then at first place a
frequential approach. Before concluding this paper, it seemed
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Fig. 7. Impedance spectra of the fuel cell versus its fractional model fitted for, measured (¥), simulated (—) (a) j=0.068 Acm™2, (b) j=0.07Acm™2, (c)

j=0.072Acm™2, (d) j=0.074 Acm™2.
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1. Fractional transfer
function

Change of
Laplace variable

2. Generalized
differential equation

Change of
variables: non-
integer derivative of
the output

3. Generalized system
of state equations

Discretization

4, Solution of state
equations

Fig. 8. Steps for calculating the time domain response of a system containing
non-integer derivatives.

however essential to us to transform this frequential model into
time domain, which is an obligatory step for the study of the
dynamic behavior of the fuel cell.

The principal steps of the generalized algorithm for cal-
culating the time response of a fractional system containing
non-integer derivatives are summarized in Fig. 8 [16].

Each step of this algorithm, which involves extensive calcu-
lations, is described in Appendix A. This algorithm has been
applied to determine the time response of the air-breathing
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Fig. 9. Simplified schematic of a PEMFC.

PEMEFC studied in Section 3. In order to find the transfer func-
tion of the fuel cell, the load current i(¢) is taken as input of
the model, and the voltage across its terminals v(¢), as its out-
put. The equivalent circuit of the fuel cell is shown in Fig. 9. The
reversible thermodynamic potential Ey, (=1.23 V) of the fuel cell
is represented by a DC voltage source.

The fractional transfer function of an electrode is given by

| ) 1/2
Zus) = ©) _ al LRtk(J) N ZWk(S)J
= =— X /2

1(s) e + Ri(J) + Zywyi (5)
where
725 = A() Ak()) - ook (18)

Wk 1+¢_ s+ wok
WOk

where Vi(s) represents the Laplace transform of wvi(¢), and
wok = 1/t the angular cut-off frequency. After the application
of the algorithm described above, the output voltage v(¢) of the
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Fig. 10. Simulated voltage responses of the fuel cell and the cathode for: (a) rising step input; (b) falling step input.
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Table 2

Values of model parameters obtained for j=0.06 A cm—2

Parameters Values Units
Ry 1.94 x 1078 Q

Ric 3.27 x 1073 Q

Aq ~0 Qrad!?
Ac 4.858 x 107° Qrad!”?
Rm 0.3 Q

y-Cql 152 F

T 0.0404 S

fuel cell is then given by the following equation:
v(t) = Em — £ {Zu()[(9)} — £ {Ze()()} — Rmi(1)  (19)

where I(s) represents the Laplace transform of the input current
i(?).

In order to find the voltage response of the fractional model,
two types of input signals i(#) were applied; a rising step signal
of amplitude 1.5A (Fig. 10a-1), and another falling step signal,
of the same amplitude (Fig. 10b-1). The final results of the sim-
ulation of the voltage response of the fuel cell (Fig. 10, a-1 and
b-1) and of cathode (Fig. 10, a-2 and b-2) are shown on Fig. 10.

For the simulation of Fig. 10, the values of the parame-
ters identified by EIS (in Section 3) were linearly extrapolated
in order to obtain the parameters corresponding to 1.5 A (i.e.
j=0.06 A cm~2). These values are given in Table 2. Note that the
transient response is in good agreement with the time response
of the gas transport [12].

5. Experimental validation of time response

In this section, the dynamic response, derived from the frac-
tional model of PEMFC in Section 4, has been experimentally
validated.

In order to experimentally measure the dynamic response of
a commercial air-breathing PEMFC on the test bench, a peri-
odic square wave signal of the current of amplitude 1.5 A and
frequency 0.1 Hz was imposed at the fuel cell terminals by an
electronic load. The corresponding variations in the cell volt-
age were then recorded; the results are shown in Fig. 11. These
measurements were made at the ambient temperature (30 °C).
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Fig. 11. Measured dynamic response of the air-breathing PEMFC, cell voltage
(—), cell current (---).
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Fig. 12. Comparison of measured and simulated dynamic responses of the
PEMFC, simulated (—), measured (- - -).

The results of simulation (Fig. 10) and experimental mea-
surement (Fig. 11) are compared for a period in Fig. 12. It is
observable that the modeling results are in good agreement with
the measurements. The mean error over this period is equal to
0.64%, and the maximum error is about 4.13%.

6. Conclusions

A fine and compact frequential model of a PEMFC taking
account of the diffusion and charge-transfer phenomena was
presented in this paper. This new modeling technique distin-
guishes completely from the traditional approaches since it uses
non-integer derivation. In particular it makes possible to reach
a model of the fuel cell, reliable on a wide range of frequencies
with a limited number of parameters. Moreover, each parameter
of the model has a physical significance.

The technique of electrochemical impedance spectroscopy
was demonstrated as a powerful tool in order to validate this
model. Lastly, a general algorithm for calculating the time
response of fractional systems was used for the simulation of the
transient state of the fuel cell. In order to validate the simulated
dynamic behavior of the fuel cell, a commercial air-breathing
PEMFC was subjected to rapid variations in the load current
and the output voltage was recorded. The results of simulation
were found in good agreement with experimental results.

However, a further study is necessary for the development
of a more specific algorithm for the simulation of the transient
response. The major work needed in future consists in defining
more systematic methods for identification of the parameters
and their validation particularly in the time domain. Moreover,
it would also be interesting to study in detail the influence of
the working conditions and geometrical parameters of the fuel
cell (i.e. geometry of electrodes, the thickness and the type of
membrane etc.) on the model parameters.

Appendix A. Calculation of time response of the fuel cell
Step 1: Definition of the transfer function

We can describe a system in the form of a transfer function

between an output O and an input I, as:F(s) = %Where 0
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Fig. Al. Schematic of an electrode.

and [ indicate the Laplace transforms of the functions o and i,
respectively. The objective is of course to determine the output
o(t) for a given input i(?).

Generally, the function F(s) can be written in the form of a
quotient of two polynomials A(s) and B(s), each containing the
integer derivatives of s and one or more implicit systems of frac-
tional nature all of the same angular cut-off frequency wg = 1/7¢.

First of all, we can write an operational relation between the
current /(s) and the voltage V(s) for a single electrode (Fig. Al):

V) _ R+ 26 "
1) L+ RG)+ Z3 ()
where
12, AG)_ AG) - Jwo
Zyy (S)_\/1+X_ ST oo
o

where j represents the current density. In this case, A(s) and B(s)
are defined by

A(s) = Ri(j) + Zy)(s)

. 1/2
B(s) = 1 4 5Ca - R(j) + sCa1 - Zy)*(s)

Step 2: Change of the variable of Laplace

The second step consists of carrying out the change of the
variable of Laplace, i.e., s1 =5+ wo.

In effect, the transfer function (A.1) becomes a rational frac-
tion of polynomials in s of only integer and non-integer orders:

V(s1 — wo) _ A(s1 — wo)
I(s1 —wo)  B(s1 — wp)

12
A0+A1/2S1/

= (A.2)
12 372
Bo + Bijasy” + Bis} + B3 sy’
where
N 12 .
AG) - w4/ R())
Ap=—F1177—, Ayp =
Ca Cal

N 32 1 ;
By = —A(j) - 0)/7, Bipp= = —wo- R())

Ca

By = A(j) - wl/?, B3 = Ry(j)

Step 3: Generalized differential equation
The Eq. (A.2) can also be written in the form:

12
By - V(s1 — wg) + Bl/zsl/ V(s — wo) + Bls{ V(s1 — wo)
3/2
+ 33/2S1/ V(s1 — wo) = Apl(s1 — wp)

2
+ Al/ZS%/ I(s1 — wo) (A3)

‘We know that [12]:
59 - G(s1 — wo) =£ {D[g(t) - exp(two)]; 51}

where G is the Laplace transform of the function g. If we apply
the inverse Laplace transform to the Eq. (A.3), the following
generalized differential equation is obtained:

Bov(t)exp(two) + B1 2D P[u(r) exp(tay)]
+ B DP[u(r) exp(tawp)] + B3 2 DP/?[u(r) exp(twp)]

= Api(t) exp(two) + A1 /2 DY) exp(two)] (A.4)

In order to simplify the notations, we consider next the variables
s(#) and e(r) such that:

s(t) = v(t) - exp(twop), e(t) = i(r) - exp(two)

By dividing each term of the Eq. (A.4) by B3p, we can then

write

B B B
s+ L5120 + s + 542 0) = Er)
B3 )2 B3)» B3

(A5)

where

Aoe(t) + Ay pe/D(r)
B3

E(t) =

Step 4: Change of variables: non-integer derivative of the
output

The change of variables carried out in this step is the
key of this algorithm of calculating time response. Indeed,
it is the operation which will enable us to build the gener-
alized system of state equations, and thus to solve the prob-
lem.

The system (A.6) below clarifies better this change of vari-
able:

sy =x10, Y20 = DYsr) = P ) = 10,

sV = DDs(ry = 52 0) = x30),

sy = DOty = X (1) = x40) (A.6)

The unknown to be determined is of course xj.
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Step 5: Construction of generalized system of state
equations

By using the change of variables defined by the system (A.6),
the Eq. (A.5) can be written in the form:

Py = x4(t) = —a1x1 () — azxa(t) — azxa(6) + Et)
(A7)

with
By B2
a = — ap = ——

_ __ Bip
B3y’

and a = ——

2 = =
B3 B3

From the Egs. (A.6) and (A.7), one can then write the generalized
system of state equations between the input vector e(f), the state
vector x(£) = [x1(),x2(t),x3(t)]T, and the output vector s(f):

D@ = A-x(t)+ B e@), s(f)y = C - x(t) + D - e(r)

where
0 1 0 0
A = 0 O 1 . B - O 9
—a) —a; —aj 1
c=[1 0 0], D=0 (A.8)

Step 6: Discretization

In order to solve the problem, we will first of all modify the
form of the system of state equations; starting from the relations
(A.7) and (A.8):

A2 = xo) =0, 20 = x3(0) = 0,

xgl/z)(t) + a1x1(t) + axxa(t) + azx3(t) = E(¢t) (A.9)

Then, we compute each variable with a step size of /. The follow-
ing relation gives an approximation of the non-integer derivative
of a function at a sampling instant t, =m-h, [12]:

m
x&“f')(tm) — Z)\'Uj(k) -xjl(m — k) - h) (A.10)
k=0
where
(_l)kvj(vj—l)xo;}-‘f(vj—k-i-l) fork > 1
)ij(k) _ 1h ik!
o fork =0

where v; indicates the order of the derivation of the variable x;.
In the next we will consider for k> 1:

vi(vj =) x- - x@j—k+1)
k!
Eq. (A.10) can then be written in the form:

wy, (k) = (=)

A 1 -
X5 () = o Xjm) + > wu,(k) - x;[(m — k) - h]
= (A.11)

The first term at right-hand side corresponds to what we are
seeking to calculate at the instant ty, (ty, = m-h), the sum Q;(m-h)
corresponds to the samples calculated at the previous instants.
Applying the expression (A.11), for each state variable of the
system (A.9), we obtain:

1z 1 0 x1(mh)
0 h—1/2 —1 xo(mh)
al ap az +h_1/2 x3(mh)
—Q1(mh)
= —Q2(mh) (A.12)

—Q3(mh) + E(mh)

Step 7: Solution of the system

By inversing the matrix M defined in the relation (A.12), it
is then possible to determine the value of each state variable
at any instant and particularly that in which we are interested,
namely x1. By multiplying this variable by the term exp(—#/t,)
for every instant ¢, we finally obtain the variable v(#). Following
the same steps for the anode and cathode, and then using the
equation of polarization of the fuel cell, subtracting the ohmic
drop in the membrane, cell voltage can be plotted with respect to
time.

Ueen(t) = 1.23 = 0a()] = [ve(0)] = Ry - i(0)

where v,(f) and vc(¢) are the output voltages of the anode and
cathode respectively, determined using the above algorithm.
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